The Alzheimer's disease peptide β-amyloid promotes thrombin generation through activation of coagulation factor XII.
نویسندگان
چکیده
UNLABELLED Essentials How the Alzheimer's disease (AD) peptide β-amyloid (Aβ) disrupts neuronal function in the disease is unclear. Factor (F) XII initiates blood clotting via FXI, and thrombosis has been implicated in AD. Aβ triggers FXII-dependent FXI and thrombin activation, evidence of which is seen in AD plasma. Aβ-triggered clotting could contribute to neuronal dysfunction in AD and be a novel therapeutic target. SUMMARY Background β-Amyloid (Aβ) is a key pathologic element in Alzheimer's disease (AD), but the mechanisms by which it disrupts neuronal function in vivo are not completely understood. AD is characterized by a prothrombotic state, which could contribute to neuronal dysfunction by affecting cerebral blood flow and inducing inflammation. The plasma protein factor XII triggers clot formation via the intrinsic coagulation cascade, and has been implicated in thrombosis. Objectives To investigate the potential for Aβ to contribute to a prothrombotic state. Methods and results We show that Aβ activates FXII, resulting in FXI activation and thrombin generation in human plasma, thereby establishing Aβ as a possible driver of prothrombotic states. We provide evidence for this process in AD by demonstrating decreased levels of FXI and its inhibitor C1 esterase inhibitor in AD patient plasma, suggesting chronic activation, inhibition and clearance of FXI in AD. Activation of the intrinsic coagulation pathway in AD is further supported by elevated fibrin levels in AD patient plasma. Conclusions The ability of Aβ to promote coagulation via the FXII-driven contact system identifies new mechanisms by which it could contribute to neuronal dysfunction and suggests potential new therapeutic targets in AD.
منابع مشابه
Interactions of β-amyloid peptide with fibrinogen and coagulation factor XII may contribute to Alzheimer's disease.
PURPOSE OF REVIEW To review the evidence that the Alzheimer peptide β-amyloid interacts with the blood coagulation system and influences the pathophysiology of the disease. RECENT FINDINGS β-amyloid can interact with fibrinogen and blood coagulation factor XII and trigger ischemia and inflammation. SUMMARY β-amyloid interacts with fibrinogen and factor XII. These interactions can lead to in...
متن کاملTHROMBOSIS AND HEMOSTASIS Factor XI contributes to thrombin generation in the absence of factor XII
During surface-initiated blood coagulation in vitro, activated factor XII (fXIIa) converts factor XI (fXI) to fXIa. Whereas fXI deficiency is associated with a hemorrhagic disorder, factor XII deficiency is not, suggesting that fXI can be activated by other mechanisms in vivo. Thrombin activates fXI, and several studies suggest that fXI promotes coagulation independent of fXII. However, a recen...
متن کاملFactor XI contributes to thrombin generation in the absence of factor XII.
During surface-initiated blood coagulation in vitro, activated factor XII (fXIIa) converts factor XI (fXI) to fXIa. Whereas fXI deficiency is associated with a hemorrhagic disorder, factor XII deficiency is not, suggesting that fXI can be activated by other mechanisms in vivo. Thrombin activates fXI, and several studies suggest that fXI promotes coagulation independent of fXII. However, a recen...
متن کاملMyeloid differentiation factor 88-deficient bone marrow cells improve Alzheimer's disease-related symptoms and pathology.
Alzheimer's disease is characterized by extracellular deposits of amyloid β peptide in the brain. Increasing evidence suggests that amyloid β peptide injures neurons both directly and indirectly by triggering neurotoxic innate immune responses. Myeloid differentiation factor 88 is the key signalling molecule downstream to most innate immune receptors crucial in inflammatory activation. For this...
متن کاملPINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer's disease.
Mitochondrial dysfunction and synaptic damage are early pathological features of the Alzheimer's disease-affected brain. Memory impairment in Alzheimer's disease is a manifestation of brain pathologies such as accumulation of amyloid-β peptide and mitochondrial damage. The underlying pathogenic mechanisms and effective disease-modifying therapies for Alzheimer's disease remain elusive. Here, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of thrombosis and haemostasis : JTH
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2016